On Feebly – closed mappings in bitopological spaces

zahir Dobeas AL-nafie Dept.of Math. College of education , Babylon university

Abstract:

This search discusses the α -set and feebly –closed sets in bitopological space, and these concepts define the feebly-closed function, semi-closed function and preclosed function also we defines an α -closed function and study the relation between these concepts.

introduction:

let S be a subset of a bitopological spaces (X,t_1,t_2) , we denote the closure of S and the interior of S with respect to t_1 , t_2 by $cl_{t1}(S)$, $int_{t1}(S)$ and $cl_{t2}(S)$, $int_{t2}(S)$ respectively. [O.Njastad,1965] introduced the concept of α -set in a topological space (X,t). A subset S of (X,t) is called an α -set if S \subseteq int(cl(int(S))). the notion of semi open set , per -open set were introduced by[N.Levine, 1963].a subset A is said to be Feebly-open set [S.N.Maheshwari and U.D.Tapi,1978] in (X,t) if there exist an open set U such that U \subseteq A \subseteq scl(U), the complement of Feebly-open set is called Feebly closed set.

In this search , we shall define the α -set and Feebly -open set in bitopological space (X,t_1,t_2) . A subset S of a bitopological (X,t_1,t_2) is said to be α -set if S is α -set with respect to t_1 or t_2 , that is if S \subseteq in_{ti}(cl_{ti}(in_{ti}(S))), i=1 or2, we shall define a Feebly open set in a bitopological space(X,t_1,t_2) if there exist a open set U with respect to t_1 or t_2 such that U \subseteq A \subseteq scl_{ti}(U), i=1 or2, the complement of Feebly- open set is called Feebly- closed set .

Feebly closed and α -closed mapping

The concept of α -closed and Feebly- closed mapping have been introduced by [A.S.Mashhour, I.A.Hasanien and S.N.EL.Deeb,1983] and [S.N.Maheshwari and U.D.Tapi,1978] respectively.

Definintion (2-1) [S.G.Greenwood and I.L.Reilly, 1986]

Let (X,t) and (Y,σ) are two topological spaces , a function f: $(X,t) \rightarrow (Y,\sigma)$ is said to be:

1- Feebly -closed if the image of each closed set in X is Feebly- closed in Y.

2- α -closed if the image of each closed set in X is α -closed set in Y.

Lemma: (2-2) [S.G.Greenwood and I.L.Reilly, 1986]

Let A be a subset of (X,t) then sint(cl(A))=cl(int(cl(A)).

Proposition(2-3)[S.G.Greenwood and I.L.Reilly, 1986]

Let (X,t) be a topological spaces, a subset A of (X,t) is Feebly closed if and only if A is α -closed set.

Definition (2-4) [S.G.Greenwood and I.L.Reilly, 1986]

Let (X,t) and (Y,σ) are two topological spaces , a function f: $(X,t) \rightarrow (Y,\sigma)$ is said to be:

1- semi-closed if the image of each closed set in X is semi-closed set in Y.

2- pre-closed if the image of each closed set in X is pre- closed in Y.

Proposition (2-5) [S.G.Greenwood and I.L.Reilly, 1986]

Let (X,t) and (Y,σ) are two topological spaces , a function f: $(X,t) \rightarrow (Y,\sigma)$ is α -closed if and only if it is semi- closed and pre-closed .

Feebly-closed and α -closed mapping in bitopological space. Definition(3-1)

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces, a function f: $(X,t_1,t_2) \rightarrow (Y,\sigma_1,\sigma_2)$ said to be:

1- Feebly- closed if the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is Feeblyclosed.

2- α -closed the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is α - closed. **Proposition (3-2):**

Let (X,t_1,t_2) be a bitopological space and A be a subset of X then $sint_{ti}(A)=cl_{ti}(int_{ti}(A))$, i=1or2.

Proof: since we have $cl_{ti}(int_{ti}(cl_{ti}(A)))$ is semi open set with respect to ti and $cl_{ti}(int_{ti}(cl_{ti}(A)) = cl_{ti}(int_{ti}(cl_{ti}(int_{ti}(A))))$ and $cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq cl_{ti}(A))$ then $cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq sint_{ti}(cl_{ti}(A)) \dots (1)$.

Now if V is any ti-semi-open set contained in $cl_{ti}(A)$ then $U \subseteq cl_{ti}(int_{ti}(V)) \subseteq cl_{ti}(int_{ti}(cl_{ti}(A)))$ and hence $sint_{ti}(cl_{ti}(A)) \subseteq cl_{ti}(int_{ti}(cl_{ti}(A)) \dots (2))$. By (1) and (2) we get the result.

Proposition(3-3)

Let (X,t_1,t_2) be a bitopological space a subset A of X is Feebly- closed set in X if and only if A is α -closed.

Proof:

It follows from the definition of an α -set and α -closed set in bitopological space. That a subset A of (X,t_1,t_2) is α -closed set if and only if $cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq A, i=1 \text{ or } 2, \text{ since } cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq A \text{ if and only if } \text{sint}_{ti}(cl_{ti}(A)) \subseteq A \text{ by lemma } (2-2) \text{ in bitopological space the result exist.}$

Definition(3-4)

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces, a function f: $(X,t_1,t_2) \rightarrow (X,\sigma_1,\sigma_2)$ said to be:

f: $(X,t_1,t_2) \rightarrow (Y,\sigma_1,\sigma_2)$ said to be: 1- semi-closed if the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1,\sigma_2)$

1- semi-closed if the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is semi-closed.

2- pre -closed the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is pre- closed. **Proposition (3-5):**

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces , a function

f: $(X,t_1,t_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is α -closed if and only if it is semi-closed and pre-closed. Proof: since f: $(X,t_1) \rightarrow (Y,\sigma_1)$ is α -closed if and only if it is semi closed and preclosed [theorem (3), I.l.Reilly and M.R.VamanaMurthy], similarly f: $(X,t_2) \rightarrow (Y,\sigma_2)$ Is α -closed if and only if it is semi-closed and pre-closed [theorem (3), I.l.Reilly and M.R.VamanaMurthy] and hence the result.

This example show that if f: $(X,t_1,t_2) \rightarrow (X,\sigma_1,\sigma_2)$ is pre closed then f not to be α -closed.

Example (3-6): let $X = \{1,2,3\}$ and defined t_1 to be the discrete topology and $t_2 = \{X, \emptyset, \{1\}, \{3\}, \{1,3\}\}, \sigma_1 = \{X, \emptyset, \{1\}, \{3\}, \{1,3\}\}\}$ and σ_2 be the discrete topology. Define f: $(X,t_1) \rightarrow (Y,\sigma_1)$ by f(1)=f(2)=f(3)=1 then f is pre closed but not α -closed since $\{1\}$ is pre closed in (Y,σ_1) but not α -closed in (X,t_1) and define f: $(X,t_2) \rightarrow (Y,\sigma_2)$ by f(1)=f(2)=f(3)=1 then f is pre closed but not α -closed since $\{1\}$ is pre closed in (Y,σ_2) but not α -closed in (X,t_2) .

This example show that if f: $(X,t_1,t_2) \rightarrow (X,\sigma_1,\sigma_2)$ is semi- closed then f not to be α -closed.

Example(3-7)

let X={1,2,3} and defined t₁and t₂ to be the discrete topologies and σ_1 and σ_2 be the indiscrete topology. Define f: (X,t₁) \rightarrow (Y, σ_1) by f(1)=f(2)=f(3)=1 then f is semi closed but not α -closed and f: (X,t₂) \rightarrow (Y, σ_2) defined by f(1)=f(2)=f(3)=1 then f is semi closed but not α -closed since {1} is

Conclusion:

From this paper we can conclude that the type of a bitopological space (X,t_1,t_2) is depend on the type of a topological space (X,t_1) and (X,t_2) since the subset of these topologies will induce the subset of (X,t_1,t_2) and because these subset is the same in (X,t_1,t_2) , hence any definition and proposition which is true in (X,t_1) and (X,t_2) will be true in (X,t_1,t_2) in this search.

References:

- N.Levine , Amer ." semi-open sets and semi-continuity in topological spaces" Math. Mthly . 70(1963) , 36-41.
- A.S.Mashhour, I.A.Hasanien and S.N.EL.Deeb, "α-continuous and α-open mapping "Aeta . Math., Hung ,41(1983) , 13-18.
- S.G.Greenwood and I.L.Reilly, "semi-pre-open sets", Indian J.Pure, Math. 17(9),)1986), 110101105.
- S.N.Maheshwari and U.D.Tapi, "not on some application on feebly open sets " Madhya Bharatij. Univ.Saugar, (1978-79)(to appear).
- O.Najastad, " on some classes of nearly open sets ", pa.J.Math. 15(1965), 61-70.
- I.l.Reilly and M.R. VamanaMurthy, "A decomposition of continuity ", Acta, Math. Hung. 45(1985), 27-32.